

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reductio *q*-stability

Surface case

Quadratic differentials Further studies

X-stability conditions on Calabi-Yau-X categories

Yu Qiu

Joint work with Akishi Ikeda

ICRA 2018 Praha, Czech Republic

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability

Stability conditions X-stability conditions N-reduction q-stability

Surface case

Quadratic differentials Further studies

Motivations

- Mirror symmetry
- Saito-Frobenius structure
- Cluster theory

X-stability conditions

- Stability conditions
- X-stability conditions
- N-reduction
- q-stability conditions
- Surface case
 - Quadratic differentials
 - Further studies

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability

Stability conditions X-stability conditions N-reduction q-stability

conditions

Surface case

Quadratic differentials Further studies

Motivations

- Mirror symmetry
- Saito-Frobenius structure
- Cluster theory

X-stability conditions

- Stability conditions
- X-stability conditions
- N-reduction
- q-stability conditions

Surface case

- Quadratic differentials
- Further studies

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *a*-stability

q-stability conditions

Surface case

Quadratic differentials Further studies

Motivations

- Mirror symmetry
- Saito-Frobenius structure
- Cluster theory

X-stability conditions

- Stability conditions
- X-stability conditions
- N-reduction
- q-stability conditions

Surface case

- Quadratic differentials
- Further studies

Yu Qiu

Outline

- Motivations
- Mirror symmetry Saito-Frobenius
- structure Cluster theory

X-stability conditions

- Stability conditions X-stability conditions N-reduction q-stability
- Surface case
- Quadratic differentials Further studies

Motivations

Mirror symmetry

- Saito-Frobenius structure
- Cluster theory

X-stability conditions

- Stability conditions
- X-stability conditions
- N-reduction
- q-stability conditions
- Surface case
 - Quadratic differentials
 - Further studies

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials Further studies

Kontsevich's homological MS:

$\mathcal{D}^b\operatorname{Fuk}(X)\cong \mathcal{D}^b(\operatorname{Coh} X^{\vee}),$

Geometric expectation:

 $\operatorname{\mathsf{Stab}}^\circ\mathcal{D}\sim\mathcal{M}_{\operatorname{cpx}}(X)$

ldea

$$Z(S^{\vee}) = \int_{S} \Omega$$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials Further studies

Kontsevich's homological MS:

 $\mathcal{D}^b\operatorname{Fuk}(X)\cong \mathcal{D}^b(\operatorname{Coh} X^{\vee}),$

Geometric expectation:

 $\mathsf{Stab}^\circ \mathcal{D} \sim \mathcal{M}_{\mathrm{cpx}}(X)$

dea

$$Z(S^{\vee}) = \int_{S} \Omega$$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies

Kontsevich's homological MS:

$$\mathcal{D}^b\operatorname{Fuk}(X)\cong \mathcal{D}^b(\operatorname{Coh} X^{\vee}),$$

Geometric expectation:

 $\mathsf{Stab}^\circ\,\mathcal{D}\sim\mathcal{M}_{\mathrm{cpx}}(X)$

dea

$$Z(S^{\vee}) = \int_{S} \Omega$$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies

Kontsevich's homological MS:

$$\mathcal{D}^b\operatorname{Fuk}(X)\cong \mathcal{D}^b(\operatorname{Coh} X^{\vee}),$$

Geometric expectation:

$$\operatorname{\mathsf{Stab}}^\circ\mathcal{D}\sim\mathcal{M}_{\operatorname{cpx}}(X)$$

dea

$$Z(S^{\vee}) = \int_{S} \Omega$$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies

Kontsevich's homological MS:

$$\mathcal{D}^b\operatorname{Fuk}(X)\cong \mathcal{D}^b(\operatorname{Coh} X^{\vee}),$$

Geometric expectation:

$$\mathsf{Stab}^\circ \mathcal{D} \sim \mathcal{M}_{\mathrm{cpx}}(X)$$

Idea:

$$Z(S^{\vee}) = \int_{S} \Omega$$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies

Kontsevich's homological MS:

$$\mathcal{D}^b\operatorname{Fuk}(X)\cong \mathcal{D}^b(\operatorname{Coh} X^{\vee}),$$

Geometric expectation:

$$\mathsf{Stab}^\circ \mathcal{D} \sim \mathcal{M}_{\mathrm{cpx}}(X)$$

Idea:

$$Z(S^{ee}) = \int_S \Omega$$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies

Let ${\boldsymbol{\mathsf{S}}}$ be a Fomin-Shapiro-Thurston marked surface.

Theorem (Bridgeland-Smith)

 $\mathsf{Stab}^\circ \, \mathcal{D}_3({\boldsymbol{\mathsf{S}}})/\, \mathsf{Aut} \cong \mathsf{Quad}_3({\boldsymbol{\mathsf{S}}}).$

By understanding Aut, there is a upgraded version:

Theorem (King-Qiu)

Suppose **S** is unpunctured and **S** $_{ riangle}$ be its decorated version. **Then**

 $\mathsf{Stab}^\circ \mathcal{D}_3(\mathbf{S}) \cong \mathsf{FQuad}_3^\circ(\mathbf{S}_{ riangle})$

is simply connected.

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case Quadratic differentials

Further studies

Let **S** be a Fomin-Shapiro-Thurston marked surface.

Theorem (Bridgeland-Smith)

 $\mathsf{Stab}^{\circ} \mathcal{D}_3(\mathbf{S}) / \mathsf{Aut} \cong \mathsf{Quad}_3(\mathbf{S}).$

By understanding Aut, there is a upgraded version:

Theorem (King-Qiu)

Suppose ${\boldsymbol{\mathsf{S}}}$ is unpunctured and ${\boldsymbol{\mathsf{S}}}_{\bigtriangleup}$ be its decorated version. Then

 $\mathsf{Stab}^\circ \mathcal{D}_3(\mathbf{S}) \cong \mathsf{FQuad}_3^\circ(\mathbf{S}_{\bigtriangleup})$

s simply connected

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case Quadratic differentials Further studies Let ${\boldsymbol{\mathsf{S}}}$ be a Fomin-Shapiro-Thurston marked surface.

Theorem (Bridgeland-Smith)

 $\mathsf{Stab}^{\circ} \mathcal{D}_3(\mathbf{S}) / \mathsf{Aut} \cong \mathsf{Quad}_3(\mathbf{S}).$

By understanding Aut, there is a upgraded version:

Theorem (King-Qiu)

Suppose ${\bm S}$ is unpunctured and ${\bm S}_{\bigtriangleup}$ be its decorated version.Then

 $\mathsf{Stab}^\circ \mathcal{D}_3(\mathbf{S}) \cong \mathsf{FQuad}_3^\circ(\mathbf{S}_{\bigtriangleup})$

is simply connected.

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies Let \mathfrak{S} be a flat surface and $\mathcal{D}_{\infty}(\mathfrak{S})$: = TFuk(\mathfrak{S}) its the topological Fuakaya category.

heorem (Haiden-Katzarkov-Kontsevich)

 $\operatorname{Stab}^{\circ} \mathcal{D}_{\infty}(\mathfrak{S}) \cong \operatorname{FQuad}_{\infty}(\mathfrak{S}).$

Remark

D₃(S) is Calabi-Yau-3, which can be embedded into a derived Fukaya category (Smith).
 D_∞(G) is not Calabi-Yau.

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies Let \mathfrak{S} be a flat surface and $\mathcal{D}_{\infty}(\mathfrak{S})$: = TFuk(\mathfrak{S}) its the topological Fuakaya category.

Theorem (Haiden-Katzarkov-Kontsevich)

 $\mathsf{Stab}^{\circ} \mathcal{D}_{\infty}(\mathfrak{S}) \cong \mathsf{FQuad}_{\infty}(\mathfrak{S}).$

lemark

D₃(S) is Calabi-Yau-3, which can be embedded into a derived Fukaya category (Smith).
 D₋₋(G) is not Calabi-Yau

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials Further studies Let \mathfrak{S} be a flat surface and $\mathcal{D}_{\infty}(\mathfrak{S})$: = TFuk(\mathfrak{S}) its the topological Fuakaya category.

Theorem (Haiden-Katzarkov-Kontsevich)

 $\mathsf{Stab}^{\circ} \mathcal{D}_{\infty}(\mathfrak{S}) \cong \mathsf{FQuad}_{\infty}(\mathfrak{S}).$

Remark

D₃(S) is Calabi-Yau-3, which can be embedded into a derived Fukaya category (Smith).

• $\mathcal{D}_{\infty}(\mathfrak{S})$ is not Calabi-Yau.

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials Further studies Let \mathfrak{S} be a flat surface and $\mathcal{D}_{\infty}(\mathfrak{S})$: = TFuk(\mathfrak{S}) its the topological Fuakaya category.

Theorem (Haiden-Katzarkov-Kontsevich)

 $\mathsf{Stab}^{\circ} \mathcal{D}_{\infty}(\mathfrak{S}) \cong \mathsf{FQuad}_{\infty}(\mathfrak{S}).$

Remark

D₃(S) is Calabi-Yau-3, which can be embedded into a derived Fukaya category (Smith).
D_∞(G) is not Calabi-Yau.

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure

X-stability

Stability conditions X-stability conditions *N*-reductio *q*-stability

Surface case

Quadratic differentials Further studies

Motivations

• Mirror symmetry

- Saito-Frobenius structure
- Cluster theory

\mathbb{X} -stability conditions

- Stability conditions
- X-stability conditions
- N-reduction
- q-stability conditions
- Surface case
 - Quadratic differentials
 - Further studies

Yu Qiu

Outline

Motivations

Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies

Let Q be a Dynkin quiver.

Let \mathfrak{h} be the Cartan subalgebra of the f.d. complex simple Lie lgebra \mathfrak{g} corresponding to Q and $\mathfrak{h}_{\mathrm{reg}}$ its regular part. Consider the 'Calabi-Yau- ∞ ' category

 $\mathcal{D}_{\infty}(Q): = D^{b}(\mathbf{k}Q).$

Ve expect

$$\operatorname{Stab} \mathcal{D}_{\infty}(Q) \cong \mathfrak{h}/W \tag{1}$$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reduction q-stability conditions

Surface case

Quadratic differentials Further studies

Let Q be a Dynkin quiver.

Let $\mathfrak h$ be the Cartan subalgebra of the f.d. complex simple Lie algebra $\mathfrak g$ corresponding to Q and $\mathfrak h_{\rm reg}$ its regular part.

Consider the 'Calabi-Yau- ∞ ' category

 $\mathcal{D}_{\infty}(Q): = D^{b}(\mathbf{k}Q).$

Ve expect

$$\operatorname{Stab} \mathcal{D}_{\infty}(Q) \cong \mathfrak{h}/W \tag{1}$$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies

Let Q be a Dynkin quiver.

Let \mathfrak{h} be the Cartan subalgebra of the f.d. complex simple Lie algebra \mathfrak{g} corresponding to Q and \mathfrak{h}_{reg} its regular part. Consider the 'Calabi-Yau- ∞ ' category

$$\mathcal{D}_{\infty}(Q): = D^{b}(\mathbf{k}Q).$$

Ve expect

$$\operatorname{Stab} \mathcal{D}_{\infty}(Q) \cong \mathfrak{h}/W \tag{1}$$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies

Let Q be a Dynkin quiver.

Let \mathfrak{h} be the Cartan subalgebra of the f.d. complex simple Lie algebra \mathfrak{g} corresponding to Q and \mathfrak{h}_{reg} its regular part. Consider the 'Calabi-Yau- ∞ ' category

$$\mathcal{D}_{\infty}(Q): = D^{b}(\mathbf{k}Q).$$

We expect

$$\operatorname{Stab} \mathcal{D}_{\infty}(Q) \cong \mathfrak{h}/W \tag{1}$$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies

Let Q be a Dynkin quiver.

Let \mathfrak{h} be the Cartan subalgebra of the f.d. complex simple Lie algebra \mathfrak{g} corresponding to Q and \mathfrak{h}_{reg} its regular part. Consider the 'Calabi-Yau- ∞ ' category

$$\mathcal{D}_{\infty}(Q)$$
: = $D^{b}(\mathbf{k}Q)$.

We expect

$$\operatorname{Stab} \mathcal{D}_{\infty}(Q) \cong \mathfrak{h}/W \tag{1}$$

Almost Frobenius structure

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reductio q-stability

Surface case

Quadratic differentials Further studies On the other hand, consider the Calabi-Yau-N category

 $\mathcal{D}_N(Q): = \mathcal{D}_{fd}(\Gamma_N Q).$

We expect

$$\operatorname{Stab} \mathcal{D}_N(Q) / \operatorname{ST}_N(Q) \cong \mathfrak{h}_{\operatorname{reg}} / W,$$
 (2)

where $ST_N(Q)$ is the spherical twist group, that can be identified with Artin/braid group Br_Q by Qiu-Woolf. This has been proved by Ikeda for A_n (and BQS for A_2).

Almost Frobenius structure

.

On the other hand, consider the Calabi-Yau-N category

 $\mathcal{D}_N(Q)$: = $\mathcal{D}_{fd}(\Gamma_N Q)$.

We expect

$$\operatorname{Stab} \mathcal{D}_N(Q) / \operatorname{ST}_N(Q) \cong \mathfrak{h}_{\operatorname{reg}} / W,$$
 (2)

where $ST_N(Q)$ is the spherical twist group, that can be identified with Artin/braid group Br_Q by Qiu-Woolf.

Almost Frobenius structure

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case Quadratic differentials

Further studies

On the other hand, consider the Calabi-Yau-N category

 $\mathcal{D}_N(Q): = \mathcal{D}_{fd}(\Gamma_N Q).$

We expect

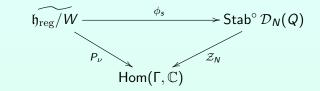
$$\operatorname{Stab} \mathcal{D}_N(Q) / \operatorname{ST}_N(Q) \cong \mathfrak{h}_{\operatorname{reg}} / W,$$
 (2)

where $ST_N(Q)$ is the spherical twist group, that can be identified with Artin/braid group Br_Q by Qiu-Woolf. This has been proved by Ikeda for A_n (and BQS for A_2).

Twisted periods

Yu Qiu

Upgraded version:



where the period map P_{ν} corresponds to the central charge Z_N for

$$\nu = \frac{N-2}{2}$$

Aim: generalize to s = N in \mathbb{C} .

Twisted periods

Yu Qit

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

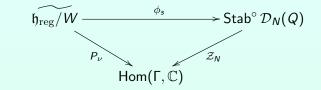
X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials Further studie:

Upgraded version:



where the period map P_{ν} corresponds to the central charge Z_N for

$$\nu=\frac{N-2}{2}.$$

Aim: generalize to s = N in \mathbb{C} .

Twisted periods

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

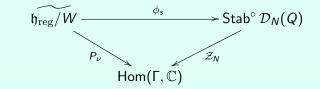
X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials Further studie

Upgraded version:



where the period map P_{ν} corresponds to the central charge Z_N for

$$\nu=\frac{N-2}{2}.$$

Aim: generalize to s = N in \mathbb{C} .

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure

X-stability

Stability conditions X-stability conditions N-reduction q-stability

Surface case

Quadratic differentials Further studies

Motivations

- Mirror symmetry
- Saito-Frobenius structure
- Cluster theory

\mathbb{X} -stability conditions

- Stability conditions
- X-stability conditions
- N-reduction
- q-stability conditions
- Surface case
 - Quadratic differentials
 - Further studies

Cluster categories

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies

$N \ge$ 2, au be the Auslander-Reiten functor.

Definition (Buan-Marsh-Reineke-Reiten-Todorov, Keller)

For any integer $m \ge 2$, the m-cluster shift is $\Sigma_m = \tau^{-1} \circ [m-1]$. The m-cluster category $C_m(Q)$ is the orbit category

$$\mathcal{C}_m(Q)$$
: = $\mathcal{D}_\infty(Q)/\Sigma_m$.

Theorem (Amoit-Guo-Keller)

Let $\Gamma_N Q$ be the Ginzburg dga of degree N and $C(\Gamma_N Q) = \operatorname{per} \Gamma_N Q / \mathcal{D}_N(Q)$. Then

 $\mathcal{C}_{N-1}(Q) \cong \operatorname{per} \Gamma_N Q / \mathcal{D}_N(Q).$

Cluster categories

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials Further studies

$N \geq$ 2, au be the Auslander-Reiten functor.

Definition (Buan-Marsh-Reineke-Reiten-Todorov, Keller)

For any integer $m \ge 2$, the m-cluster shift is $\Sigma_m = \tau^{-1} \circ [m-1]$. The m-cluster category $C_m(Q)$ is the orbit category

$$\mathcal{C}_m(Q)$$
: = $\mathcal{D}_\infty(Q)/\Sigma_m$.

Theorem (Amoit-Guo-Keller)

Let $\Gamma_N Q$ be the Ginzburg dga of degree N and $C(\Gamma_N Q) = \operatorname{per} \Gamma_N Q / \mathcal{D}_N(Q)$. Then

 $\mathcal{C}_{N-1}(Q) \cong \operatorname{per} \Gamma_N Q / \mathcal{D}_N(Q).$

Cluster- ∞ categories

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials Further studies

Naively:

$$\mathcal{D}_{\infty}(Q) = \lim_{m \to \infty} \mathcal{C}_m(Q).$$

The corresponding statement for the spaces of stability conditions is (cf. Qiu)

 $\operatorname{Stab} \mathcal{D}_{\infty}(Q) \cong \lim_{N \to \infty} \operatorname{Stab} \mathcal{D}_{N}(Q) / \operatorname{Br}_{Q}.$

Application: $\mathcal{D}_{\infty}(Q)$ is a cluster-X category (and hence sliting is cluster-X tilting).

Cluster- ∞ categories

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies

Naively:

$$\mathcal{D}_{\infty}(Q) = \lim_{m \to \infty} \mathcal{C}_m(Q).$$

The corresponding statement for the spaces of stability conditions is (cf. Qiu)

$$\operatorname{Stab} \mathcal{D}_{\infty}(Q) \cong \lim_{N \to \infty} \operatorname{Stab} \mathcal{D}_N(Q) / \operatorname{Br}_Q.$$

Application: $\mathcal{D}_{\infty}(Q)$ is a cluster-X category (and hence sliting is cluster-X tilting).

Cluster- ∞ categories

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

differentials Further studies

Naively:

$$\mathcal{D}_{\infty}(Q) = \lim_{m \to \infty} \mathcal{C}_m(Q).$$

The corresponding statement for the spaces of stability conditions is (cf. Qiu)

$$\operatorname{Stab} \mathcal{D}_{\infty}(Q) \cong \lim_{N \to \infty} \operatorname{Stab} \mathcal{D}_N(Q) / \operatorname{Br}_Q.$$

Application: $\mathcal{D}_{\infty}(Q)$ is a cluster-X category (and hence sliting is cluster-X tilting).

Outline

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability condition

X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies

Motivations

- Mirror symmetry
- Saito-Frobenius structure
 - Cluster theory

X-stability conditions Stability conditions

- X-stability conditions
- N-reduction
- q-stability conditions

Surface case

- Quadratic differentials
- Further studies

$\mathbb Z\text{-}$ and $\mathbb R\text{-}\mathsf{structures}$ on triangulated categories

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability condition

X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies

There are the following structures on a triangulated category \mathcal{D} .

A (bounded) t-structure \mathcal{T} (torsion part of some torsion pair on \mathcal{D} satisfying certain condition) or a heart \mathcal{H} , which provides a homology of \mathcal{D} .

 $\mathcal{D} = \langle \mathcal{H}[k] \mid k \in \mathbb{Z} \rangle.$

A refinement of t-structure is a slicing $\mathcal{P} = \{\mathcal{P}(\phi) \mid \phi \in \mathbb{R}\}$. Note that for any ϕ , $\mathcal{P}(\phi, +\infty)$ is a t-structure with heart $\mathcal{H} = \mathcal{P}(\phi, \phi + 1]$.

$\mathbb Z\text{-}$ and $\mathbb R\text{-}\mathsf{structures}$ on triangulated categories

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions

X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies There are the following structures on a triangulated category \mathcal{D} .

• A (bounded) t-structure \mathcal{T} (torsion part of some torsion pair on \mathcal{D} satisfying certain condition) or a heart \mathcal{H} , which provides a homology of \mathcal{D} .

$$\mathcal{D} = \langle \mathcal{H}[k] \mid k \in \mathbb{Z} \rangle.$$

A refinement of t-structure is a slicing
 P = {P(φ) | φ ∈ ℝ}. Note that for any φ, P(φ, +∞) is a t-structure with heart H = P(φ, φ + 1].

$\mathbb Z\text{-}$ and $\mathbb R\text{-}\mathsf{structures}$ on triangulated categories

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions

X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies There are the following structures on a triangulated category \mathcal{D} .

• A (bounded) t-structure \mathcal{T} (torsion part of some torsion pair on \mathcal{D} satisfying certain condition) or a heart \mathcal{H} , which provides a homology of \mathcal{D} .

$$\mathcal{D} = \langle \mathcal{H}[k] \mid k \in \mathbb{Z} \rangle.$$

A refinement of t-structure is a slicing

 P = {*P*(φ) | φ ∈ ℝ}. Note that for any φ, *P*(φ, +∞) is a t-structure with heart *H* = *P*(φ, φ + 1].

$\mathbb{C}\text{-structure}$ on triangulated categories

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions

X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies

Definition (Bridgeland)

Let \mathcal{D} be a triangulated category. A stability condition $\sigma = (Z, \mathcal{P})$ on \mathcal{D} consists of a central charge $Z : K(\mathcal{D}) \to \mathbb{C}$ and a slicing $\mathcal{P}(\phi)$ s.t.:

- (a) if $0 \neq E \in \mathcal{P}(\phi)$, then $Z(E) = m_E e^{i\pi\phi}$, $m_E \in \mathbb{R}_{>0}$, (b) $\mathcal{P}(\phi+1) = \mathcal{P}(\phi)[1]$,
- (c) if $\phi_1 > \phi_2$, then $\operatorname{Hom}_{\mathcal{D}}(\mathcal{P}(\phi_1), \mathcal{P}(\phi_2)) = 0$,
- (d) Any *E* admits a HN-filtration with factors $\{A_i \in \mathcal{P}(\phi_i) \mid 1 \le i \le l\}$ for real numbers $\phi_1 > \cdots > \phi_l$.

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions

X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies Usually, we assume that the Grothendieck group $K(\mathcal{D})$ is free of finite rank, i.e. $K(\mathcal{D}) \cong \mathbb{Z}^{\oplus n}$ for some n.

Also, there is a technical condition, the support property.

Fheorem (Bridgeland)

The projection map of taking central charges

 $\mathcal{Z} \colon \operatorname{Stab} \mathcal{D} \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(K(\mathcal{D}), \mathbb{C}), \quad (Z, \mathcal{P}) \mapsto Z$

is a local homeomorphism of topological spaces. In particular, $\mathbb Z$ induces a complex structure on Stab $\mathcal D$.

 $\dim_{\mathbb{C}} \operatorname{Stab} \mathcal{D} = n.$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions

X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies Usually, we assume that the Grothendieck group $K(\mathcal{D})$ is free of finite rank, i.e. $K(\mathcal{D}) \cong \mathbb{Z}^{\oplus n}$ for some *n*. Also, there is a technical condition, the support property.

heorem (Bridgeland)

The projection map of taking central charges

 $\mathcal{Z}\colon\operatorname{Stab}\mathcal{D}\longrightarrow\operatorname{Hom}_{\mathbb{Z}}(K(\mathcal{D}),\mathbb{C}),\quad(Z,\mathcal{P})\mapsto Z$

is a local homeomorphism of topological spaces. In particular, $\mathbb Z$ induces a complex structure on Stab $\mathcal D$.

 $\dim_{\mathbb{C}} \operatorname{Stab} \mathcal{D} = n.$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions

X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies Usually, we assume that the Grothendieck group $K(\mathcal{D})$ is free of finite rank, i.e. $K(\mathcal{D}) \cong \mathbb{Z}^{\oplus n}$ for some *n*. Also, there is a technical condition, the support property.

Theorem (Bridgeland)

The projection map of taking central charges

 $\mathcal{Z} \colon \operatorname{Stab} \mathcal{D} \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(\mathcal{K}(\mathcal{D}), \mathbb{C}), \quad (Z, \mathcal{P}) \mapsto Z$

is a local homeomorphism of topological spaces. In particular, $\mathcal Z$ induces a complex structure on Stab $\mathcal D$.

$$\dim_{\mathbb{C}} \operatorname{Stab} \mathcal{D} = n.$$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions

X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies Usually, we assume that the Grothendieck group $K(\mathcal{D})$ is free of finite rank, i.e. $K(\mathcal{D}) \cong \mathbb{Z}^{\oplus n}$ for some *n*. Also, there is a technical condition, the support property.

Theorem (Bridgeland)

The projection map of taking central charges

 $\mathcal{Z} \colon \operatorname{Stab} \mathcal{D} \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(K(\mathcal{D}), \mathbb{C}), \quad (Z, \mathcal{P}) \mapsto Z$

is a local homeomorphism of topological spaces. In particular, $\mathcal Z$ induces a complex structure on Stab $\mathcal D$.

 $\dim_{\mathbb{C}}\operatorname{Stab}\mathcal{D}=n.$

Actions on $\operatorname{Stab} \mathcal D$

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability condition

X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies

On $\operatorname{\mathsf{Stab}}\nolimits\mathcal{D}$, there are two group actions commuting each other.

The first one is the natural ${\mathbb C}$ action

 $s \cdot (Z, \mathcal{P}) = (Z \cdot e^{-i\pi s}, \mathcal{P}_{\operatorname{Re}(s)}),$

where $\mathcal{P}_{\mathsf{x}}(\phi) = \mathcal{P}(\phi + x)$.

There is also a natural action on Stab ${\cal D}$ induced by ${
m Aut}\, {\cal D},$ namely:

 $\Phi(Z,\mathcal{P}) = (Z \circ \Phi^{-1}, \Phi(\mathcal{P})).$

Actions on $\operatorname{Stab} \mathcal D$

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions

X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies On Stab ${\cal D},$ there are two group actions commuting each other. ${\, \bullet \,}$ The first one is the natural ${\Bbb C}$ action

$$s \cdot (Z, \mathcal{P}) = (Z \cdot e^{-i\pi s}, \mathcal{P}_{\operatorname{Re}(s)}),$$

where $\mathcal{P}_{x}(\phi) = \mathcal{P}(\phi + x)$.

 There is also a natural action on Stab D induced by Aut D, namely:

$$\Phi(Z,\mathcal{P}) = (Z \circ \Phi^{-1}, \Phi(\mathcal{P})).$$

Actions on $\operatorname{Stab} \mathcal D$

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions

X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies On Stab ${\cal D},$ there are two group actions commuting each other. ${\, \bullet \,}$ The first one is the natural ${\Bbb C}$ action

$$s \cdot (Z, \mathcal{P}) = (Z \cdot e^{-i\pi s}, \mathcal{P}_{\operatorname{Re}(s)}),$$

where $\mathcal{P}_{x}(\phi) = \mathcal{P}(\phi + x)$.

• There is also a natural action on Stab \mathcal{D} induced by Aut \mathcal{D} , namely:

$$\Phi(Z,\mathcal{P}) = (Z \circ \Phi^{-1}, \Phi(\mathcal{P})).$$

Outline

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions **X-stability** conditions *N*-reduction *a*-stability

q-stability conditions

Surface case

Quadratic differentials Further studies

Motivations

- Mirror symmetry
- Saito-Frobenius structure
 - Cluster theory

X-stability conditions

- X-stability conditions
- N-reduction
- q-stability conditions
- Surface case
 - Quadratic differentials
 - Further studies

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reduction q-stability conditions

Surface case

Quadratic differentials Further studies Let $\mathcal{D}_{\mathbb{X}}$ be a triangulated category with a distinguish auto-equivalence $\mathbb{X}: \mathcal{D}_{\mathbb{X}} \to \mathcal{D}_{\mathbb{X}}$. Let $E[I\mathbb{X}]: = \mathbb{X}^{I}(E)$. Set

 $R = \mathbb{Z}[q^{\pm 1}]$

and define the *R*-action on $K(\mathcal{D}_{\mathbb{X}})$ by

 $q^n \cdot [E] := [E[n\mathbb{X}]].$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reduction q-stability conditions

Surface case

Quadratic differentials Further studies Let $\mathcal{D}_{\mathbb{X}}$ be a triangulated category with a distinguish auto-equivalence $\mathbb{X}: \mathcal{D}_{\mathbb{X}} \to \mathcal{D}_{\mathbb{X}}$. Let $E[I\mathbb{X}]: = \mathbb{X}^{I}(E)$. Set

 $R = \mathbb{Z}[q^{\pm 1}]$

and define the *R*-action on $K(\mathcal{D}_{\mathbb{X}})$ by

$$q^n \cdot [E] := [E[n\mathbb{X}]].$$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reduction q-stability conditions

Surface case

Quadratic differentials Further studies Let $\mathcal{D}_{\mathbb{X}}$ be a triangulated category with a distinguish auto-equivalence $\mathbb{X}: \mathcal{D}_{\mathbb{X}} \to \mathcal{D}_{\mathbb{X}}$. Let $E[I\mathbb{X}]: = \mathbb{X}^{I}(E)$. Set

$$R = \mathbb{Z}[q^{\pm 1}]$$

and define the *R*-action on $K(\mathcal{D}_{\mathbb{X}})$ by

$$q^n \cdot [E] := [E[n\mathbb{X}]].$$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reduction q-stability conditions

Surface case

Quadratic differentials Further studies Let $\mathcal{D}_{\mathbb{X}}$ be a triangulated category with a distinguish auto-equivalence $\mathbb{X}: \mathcal{D}_{\mathbb{X}} \to \mathcal{D}_{\mathbb{X}}$. Let $E[I\mathbb{X}]: = \mathbb{X}^{I}(E)$. Set

$$R = \mathbb{Z}[q^{\pm 1}]$$

and define the R-action on $K(\mathcal{D}_{\mathbb{X}})$ by

$$q^n \cdot [E] := [E[n\mathbb{X}]].$$

X-stability conditions

Yu Qiu

Outline

Motivations

Mirror symmetri Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reduction q-stability conditions

Surface case

Quadratic differentials Further studies

Definition (Ikeda-Qiu)

An X-stability condition (σ, s) consists of a stability condition $\sigma = (Z, \mathcal{P})$ on \mathcal{D}_X and a complex number $s \in \mathbb{C}$ satisfying

 $\mathbb{X}(\sigma) = \mathbf{s} \cdot \sigma.$

For a fixed complex number $s \in \mathbb{C}$, consider the specialization

$$q_s\colon \mathbb{C}[q,q^{-1}] o \mathbb{C}, \quad q\mapsto e^{\mathsf{i}\pi s}.$$

X-stability conditions

Yu Qiu

Outline

Motivations

Mirror symmetri Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reduction q-stability conditions

Surface case

differentials Further studies

Definition (Ikeda-Qiu)

An X-stability condition (σ, s) consists of a stability condition $\sigma = (Z, \mathcal{P})$ on \mathcal{D}_X and a complex number $s \in \mathbb{C}$ satisfying

 $\mathbb{X}(\sigma) = \mathbf{s} \cdot \sigma.$

For a fixed complex number $s \in \mathbb{C}$, consider the specialization

 $q_s \colon \mathbb{C}[q,q^{-1}] o \mathbb{C}, \quad q \mapsto e^{\mathsf{i}\pi s}.$

X-stability conditions

Yu Qiu

Outline

Motivations

Mirror symmetri Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reduction q-stability conditions

Surface case

Quadratic differentials Further studies

Definition (Ikeda-Qiu)

An X-stability condition (σ, s) consists of a stability condition $\sigma = (Z, \mathcal{P})$ on \mathcal{D}_X and a complex number $s \in \mathbb{C}$ satisfying

$$\mathbb{X}(\sigma) = \mathbf{s} \cdot \sigma.$$

For a fixed complex number $s \in \mathbb{C}$, consider the specialization

$$q_s\colon \mathbb{C}[q,q^{-1}] o \mathbb{C}, \quad q\mapsto e^{\mathsf{i}\pi s}.$$

\mathbb{X} -stability conditions

Yu Qiu

Outline

Motivations

Mirror symmetri Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reduction q-stability conditions

Surface case Quadratic differentials Further studies

Definition (Ikeda-Qiu)

An X-stability condition (σ, s) consists of a stability condition $\sigma = (Z, \mathcal{P})$ on \mathcal{D}_X and a complex number $s \in \mathbb{C}$ satisfying

$$\mathbb{X}(\sigma) = \mathbf{s} \cdot \sigma.$$

For a fixed complex number $s \in \mathbb{C}$, consider the specialization

$$q_s\colon \mathbb{C}[q,q^{-1}] o \mathbb{C}, \quad q\mapsto e^{\mathsf{i}\pi s}.$$

X-stability conditions, alternative

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions **X-stability** conditions *N*-reduction *q*-stability conditions

Surface case

differentials Further studies

Definition (Ikeda-Qiu)

An X-stability condition (σ, s) consists of a stability condition $\sigma = (Z, \mathcal{P})$ on \mathcal{D}_X and a complex number $s \in \mathbb{C}$ satisfying the following two more conditions:

e) the slicing satisfies P(φ + Re(s)) = P(φ)[X] for all φ ∈ R,
f) the central charge Z : K(D_X) → C_s is R-linear;

 $Z \in \operatorname{Hom}_{R}(K(\mathcal{D}_{\mathbb{X}}), \mathbb{C}_{s}).$

X-stability conditions, alternative

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reduction q-stability conditions

Surface case Quadratic differentials Further studies

Definition (Ikeda-Qiu)

An X-stability condition (σ, s) consists of a stability condition $\sigma = (Z, \mathcal{P})$ on \mathcal{D}_X and a complex number $s \in \mathbb{C}$ satisfying the following two more conditions:

(e) the slicing satisfies P(φ + Re(s)) = P(φ)[X] for all φ ∈ R,
(f) the central charge Z: K(D_X) → C_s is R-linear;

 $Z \in \operatorname{Hom}_{R}(K(\mathcal{D}_{\mathbb{X}}), \mathbb{C}_{s}).$

The X-spaces.

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reduction q-stability conditions

Surface case

Quadratic differentials Further studies

With a updated technical condition: $\mathbb X\text{-support}$ property.

heorem (Ikeda-Qiu)

The projection map of taking central charges

 $\mathcal{Z}_s \colon \mathbb{X} \mathrm{Stab}_s \mathcal{D}_{\mathbb{X}} \longrightarrow \mathrm{Hom}_R(K(\mathcal{D}_{\mathbb{X}}), \mathbb{C}_s), \quad (Z, \mathcal{P}) \mapsto Z$

is a local homeomorphism of topological spaces. In particular, Z_s induces a complex structure on \mathbb{X} Stab_s $\mathcal{D}_{\mathbb{X}}$.

 $\dim_{\mathbb{C}} \mathbb{X} \mathrm{Stab}_{s} \mathcal{D}_{\mathbb{X}} = n.$

The X-spaces.

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case Quadratic differentials

With a updated technical condition: $\mathbb X\text{-support}$ property.

Theorem (Ikeda-Qiu)

The projection map of taking central charges

 $\mathcal{Z}_s \colon \mathbb{X} \mathrm{Stab}_s \, \mathcal{D}_{\mathbb{X}} \longrightarrow \mathrm{Hom}_R(\mathcal{K}(\mathcal{D}_{\mathbb{X}}), \mathbb{C}_s), \quad (Z, \mathcal{P}) \mapsto Z$

is a local homeomorphism of topological spaces. In particular, \mathcal{Z}_s induces a complex structure on $\mathbb{X}Stab_s \mathcal{D}_{\mathbb{X}}$.

 $\dim_{\mathbb{C}} \mathbb{X} \mathrm{Stab}_{s} \mathcal{D}_{\mathbb{X}} = n.$

The X-spaces.

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions **X-stability** conditions *N*-reduction *q*-stability conditions

Surface case Quadratic differentials

With a updated technical condition: $\ensuremath{\mathbb{X}}\xspace$ -support property.

Theorem (Ikeda-Qiu)

The projection map of taking central charges

 $\mathcal{Z}_s \colon \mathbb{X} \mathrm{Stab}_s \, \mathcal{D}_{\mathbb{X}} \longrightarrow \mathrm{Hom}_R(\mathcal{K}(\mathcal{D}_{\mathbb{X}}), \mathbb{C}_s), \quad (Z, \mathcal{P}) \mapsto Z$

is a local homeomorphism of topological spaces. In particular, \mathcal{Z}_s induces a complex structure on $\mathbb{X}Stab_s \mathcal{D}_{\mathbb{X}}$.

 $\dim_{\mathbb{C}} \mathbb{X} \operatorname{Stab}_{s} \mathcal{D}_{\mathbb{X}} = n.$

Example:Calabi-Yau- \mathbb{X} dga $\Gamma_{\mathbb{X}}Q := (\mathbf{k}\overline{Q}, d)$

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reduction q-stability conditions

Surface case Quadratic differentials Further studies

Definition (Ginzburg and Keller)

Let $Q = (Q_0, Q_1)$ be a finite acyclic quiver. Define a $\mathbb{Z} \oplus \mathbb{Z}\mathbb{X}$ -graded quiver \overline{Q} with same vertices and arrows

- an original arrow $a: i \rightarrow j \in Q_1$ (degree 0);
- an opposite arrow $a^* : j \to i$ for the original arrow $a : i \to j \in Q_1$ (degree 2 X);

• a loop t_i for each vertex $i \in Q_0$ (degree 1 - X).

Let $\mathbf{k}\overline{Q}$ be a $\mathbb{Z} \oplus \mathbb{Z}\mathbb{X}$ -graded path algebra of \overline{Q} , and define a differential d: $\mathbf{k}\overline{Q} \to \mathbf{k}\overline{Q}$ of degree 1 by

• d
$$a = d a^* = 0$$
 for $a \in Q_1$;

• d
$$t_i = e_i \left(\sum_{a \in Q_1} (aa^* - a^*a) \right) e_i;$$

where e_i is the idempotent at $i \in Q_0$

Calabi-Yau-X categories

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reduction q-stability conditions

Surface case Quadratic differentials Denote by $\mathcal{D}_\infty(Q)$: $= \mathcal{D}^b(\mathbf{k}Q)$ the bounded derived category of $\mathbf{k}Q$ and

$$\mathcal{D}_{\mathbb{X}}(Q)$$
: = $\mathcal{D}_{fd}(\Gamma_{\mathbb{X}}Q)$

the finite-dimensional derived category of $\Gamma_{\mathbb{X}}Q$.

Theorem (Keller, Van den Bergh)

The Calabi-Yau- \mathbb{X} completion $\Pi_{\mathbb{X}}(kQ)$ of the path algebra kQ is isomorphic to the Ginzburg Calabi-Yau- \mathbb{X} algebra $\Gamma_{\mathbb{X}}Q$. In particular, $\mathcal{D}_{\mathbb{X}}(Q)$ is Calabi-Yau- \mathbb{X} .

Outline

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability

Stability conditions X-stability conditions

N-reduction

q-stability conditions

Surface case

Quadratic differentials Further studies

Motivations

- Mirror symmetry
- Saito-Frobenius structure
- Cluster theory

X-stability conditions

- Stability conditions
- X-stability conditions
- N-reduction
- q-stability conditions

Surface case

- Quadratic differentials
- Further studies

N-reduction

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability

Stability conditions X-stability conditions

N-reduction

q-stability conditions

Surface case

Quadratic differentials Further studies

Let *N* be an integer. The orbit category $\mathcal{D}_{\mathbb{X}} / [\mathbb{X} - N]$ is *N*-reductive if it behaves well.

We will write $\mathcal{D}_N = \mathcal{D}_X /\!\!/ [X - N]$ when the triangulated category \mathcal{D}_N is the canonical triangulated hull of $\mathcal{D}_X / [X - N]$.

N-reduction

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions

N-reduction

q-stability conditions

Surface case

Quadratic differentials Further studies Let N be an integer. The orbit category $\mathcal{D}_{\mathbb{X}} / [\mathbb{X} - N]$ is N-reductive if it behaves well. We will write $\mathcal{D}_N = \mathcal{D}_{\mathbb{X}} /\!\!/ [\mathbb{X} - N]$ when the triangulated category \mathcal{D}_N is the canonical triangulated hull of $\mathcal{D}_{\mathbb{X}} / [\mathbb{X} - N]$.

N-reduction on spaces

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions

N-reduction

q-stability conditions

Surface case

Quadratic differentials Further studies

Theorem (Ikeda-Qiu)

If $\mathcal{D}_{\mathbb{X}}$ is an N-reductive, then there is a canonical injection of complex manifolds

 $\iota_N \colon \mathbb{X} \mathrm{Stab}_N(\mathcal{D}_{\mathbb{X}}) \to \mathrm{Stab}\,\mathcal{D}_N,$

whose image of ι_N is open and closed.

Outline

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions

N-reduction

q-stability conditions

Surface case

Quadratic differentials Further studies

Motivations

- Mirror symmetry
- Saito-Frobenius structure
- Cluster theory

X-stability conditions

- Stability conditions
- X-stability conditions
- N-reduction
- q-stability conditions
- Surface case
 - Quadratic differentials
 - Further studies

The X-hearts

Definition

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions

q-stability

Surface case

Quadratic differentials Further studies An X-heart $\mathcal{D}_{\infty} \subset \mathcal{D}_{X}$ is a full **triangulated** subcategory of \mathcal{D}_{X} satisfying the following conditions:

(1) if $k_1 > k_2$, then $\operatorname{Hom}_{\mathcal{D}_{\mathbb{X}}}(\mathcal{D}_{\infty}[k_1\mathbb{X}], \mathcal{D}_{\infty}[k_2\mathbb{X}]) = 0$,

(2) Any *E* admits a HN-filtration with factors $\{A_i \in \mathcal{D}_{\infty}[k_i \mathbb{X}] \mid 1 \le k \le l\}$ with integers $k_1 > \cdots > k_l$.

 $\mathcal{D}_{\mathbb{X}} = \langle \mathcal{D}_{\infty}[k] \mid k \in \mathbb{Z} \rangle.$ $K(\mathcal{D}_{\infty}) \otimes_{\mathbb{Z}} R \cong K(\mathcal{D}_{\mathbb{X}}).$ Example: $\mathcal{D}_{\infty} = \mathcal{D}_{\infty}(Q)$ and $\mathcal{D}_{\mathbb{X}} = \mathcal{D}_{\mathbb{X}}(Q).$

The X-hearts

Definition

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions

a-stability

Surface case

Quadratic differentials Further studies An X-heart $\mathcal{D}_{\infty} \subset \mathcal{D}_{\mathbb{X}}$ is a full **triangulated** subcategory of $\mathcal{D}_{\mathbb{X}}$ satisfying the following conditions: (1) if $k_1 > k_2$, then $\operatorname{Hom}_{\mathcal{D}_{\mathbb{X}}}(\mathcal{D}_{\infty}[k_1\mathbb{X}], \mathcal{D}_{\infty}[k_2\mathbb{X}]) = 0$,

(2) Any *E* admits a HN-filtration with factors $\{A_i \in \mathcal{D}_{\infty}[k_i \mathbb{X}] \mid 1 \le k \le I\}$ with integers $k_1 > \cdots > k_l$.

 $\mathcal{D}_{\mathbb{X}} = \langle \mathcal{D}_{\infty}[k] \mid k \in \mathbb{Z} \rangle.$ $\mathcal{K}(\mathcal{D}_{\infty}) \otimes_{\mathbb{Z}} R \cong \mathcal{K}(\mathcal{D}_{\mathbb{X}}).$

Example: $\mathcal{D}_{\infty} = \mathcal{D}_{\infty}(Q)$ and $\mathcal{D}_{\mathbb{X}} = \mathcal{D}_{\mathbb{X}}(Q)$.

The X-hearts

Definition

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions

N-reduction

Surface case

Quadratic differentials Further studie An X-heart $\mathcal{D}_{\infty} \subset \mathcal{D}_{\mathbb{X}}$ is a full **triangulated** subcategory of $\mathcal{D}_{\mathbb{X}}$ satisfying the following conditions: (1) if $k_1 > k_2$, then $\operatorname{Hom}_{\mathcal{D}_{\mathbb{X}}}(\mathcal{D}_{\infty}[k_1\mathbb{X}], \mathcal{D}_{\infty}[k_2\mathbb{X}]) = 0$,

(2) Any *E* admits a HN-filtration with factors $\{A_i \in \mathcal{D}_{\infty}[k_i \mathbb{X}] \mid 1 \le k \le l\}$ with integers $k_1 > \cdots > k_l$.

$$\mathcal{D}_{\mathbb{X}} = \langle \mathcal{D}_{\infty}[k] \mid k \in \mathbb{Z} \rangle.$$

 $\mathcal{K}(\mathcal{D}_{\infty}) \otimes_{\mathbb{Z}} R \cong \mathcal{K}(\mathcal{D}_{\mathbb{X}}).$
Example: $\mathcal{D}_{\infty} = \mathcal{D}_{\infty}(Q)$ and $\mathcal{D}_{\mathbb{X}} = \mathcal{D}_{\mathbb{X}}(Q).$

The construction

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reductions

q-stability conditions

Surface case

differentials Further studies Consider a triple $(\mathcal{D}_{\infty}, \widehat{\sigma}, s)$ consists of an X-heart \mathcal{D}_{∞} , a (Bridgeland) stability condition $\widehat{\sigma} = (\widehat{Z}, \widehat{\mathcal{P}})$ on \mathcal{D}_{∞} and a complex number s. We construct a pre-stability condition $\sigma_* = (Z, \mathcal{P}_*)$ as follows. First extend \widehat{Z} to

 $Z_q\colon=\widehat{Z}\otimes {\sf R}\colon {\sf K}({\mathcal D}_{\mathbb X}) o {\mathbb C}[q,q^{-1}]$

nd let

$$Z = q_s \circ Z_q \colon K(\mathcal{D}_{\mathbb{X}}) o \mathbb{C}$$

that gives a central charge function on $\mathcal{D}_{\mathbb{X}}.$ The slicing \mathcal{P}_{*} is defined as

 $\mathcal{P}_{*}(\phi) = \langle \widehat{\mathcal{P}}[\mathbb{ZX}] \rangle^{s} \colon = \langle \widehat{\mathcal{P}}(\phi - k \operatorname{Re}(s))[k\mathbb{X}] \rangle.$ (3)

The construction

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reduction

q-stability conditions

Surface case

Quadratic differentials Further studies Consider a triple $(\mathcal{D}_{\infty}, \hat{\sigma}, s)$ consists of an X-heart \mathcal{D}_{∞} , a (Bridgeland) stability condition $\hat{\sigma} = (\hat{Z}, \hat{\mathcal{P}})$ on \mathcal{D}_{∞} and a complex number *s*. We construct a pre-stability condition $\sigma_* = (Z, \mathcal{P}_*)$ as follows. First extend \hat{Z} to

$$Z_q\colon=\widehat{Z}\otimes {\sf R}\colon {\sf K}({\mathcal D}_{\mathbb X}) o {\mathbb C}[q,q^{-1}]$$

and let

$$Z = q_s \circ Z_q \colon K(\mathcal{D}_{\mathbb{X}}) o \mathbb{C}$$

that gives a central charge function on $\mathcal{D}_{\mathbb{X}}.$ The slicing \mathcal{P}_* is defined as

 $\mathcal{P}_{*}(\phi) = \langle \widehat{\mathcal{P}}[\mathbb{ZX}] \rangle^{s} := \langle \widehat{\mathcal{P}}(\phi - k \operatorname{Re}(s))[k\mathbb{X}] \rangle.$ (3)

The construction

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction

q-stability conditions

Surface case

Quadratic differentials Further studies Consider a triple $(\mathcal{D}_{\infty}, \hat{\sigma}, s)$ consists of an X-heart \mathcal{D}_{∞} , a (Bridgeland) stability condition $\hat{\sigma} = (\hat{Z}, \hat{\mathcal{P}})$ on \mathcal{D}_{∞} and a complex number *s*. We construct a pre-stability condition $\sigma_* = (Z, \mathcal{P}_*)$ as follows. First extend \hat{Z} to

$$Z_q\colon=\widehat{Z}\otimes {\sf R}\colon {\sf K}({\mathcal D}_{\mathbb X}) o {\mathbb C}[q,q^{-1}]$$

and let

$$Z = q_s \circ Z_q \colon K(\mathcal{D}_{\mathbb{X}}) o \mathbb{C}$$

that gives a central charge function on $\mathcal{D}_{\mathbb{X}}.$ The slicing \mathcal{P}_* is defined as

$$\mathcal{P}_{*}(\phi) = \langle \widehat{\mathcal{P}}[\mathbb{ZX}] \rangle^{s} \colon = \langle \widehat{\mathcal{P}}(\phi - k \operatorname{Re}(s))[k\mathbb{X}] \rangle.$$
(3)

Global dimension function

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions

q-stability conditions

Surface case

Quadratic differentials Further studies Generalizing the global dimension of an algebra (or an Abelian category), we have the following.

Definition

Given a slicing $\mathcal P$ on a triangulated category $\mathcal D$. Define the global dimension of $\mathcal P$ by

gldim $\mathcal{P} = \sup\{\phi_2 - \phi_1 \mid \operatorname{Hom}(\mathcal{P}(\phi_1), \mathcal{P}(\phi_2)) \neq 0\}.$

For a stability conditions $\sigma = (Z, \mathcal{P})$ on \mathcal{D} , its global dimension gldim σ is defined to be gldim \mathcal{P} .

Global dimension function

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions

N-reduction

q-stability conditions

Surface case

Quadratic differentials Further studies Generalizing the global dimension of an algebra (or an Abelian category), we have the following.

Definition

Given a slicing $\mathcal P$ on a triangulated category $\mathcal D$. Define the global dimension of $\mathcal P$ by

 $\operatorname{gldim} \mathcal{P} = \sup\{\phi_2 - \phi_1 \mid \operatorname{Hom}(\mathcal{P}(\phi_1), \mathcal{P}(\phi_2)) \neq 0\}.$

For a stability conditions $\sigma = (Z, \mathcal{P})$ on \mathcal{D} , its global dimension gldim σ is defined to be gldim \mathcal{P} .

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

- Stability conditions X-stability conditions
- N-reduction

q-stability conditions

Surface case

Quadratic differentials Further studies Given a heart \mathcal{H} in \mathcal{D} , let \mathcal{P}_0 be the associated slicing with $\mathcal{P}(\phi) = \mathcal{H}[\phi]$ for $\phi \in \mathbb{Z}$ and $\mathcal{P}(\phi) = \emptyset$ otherwise. Then we have

gldim $\mathcal{P}_0 = \operatorname{gldim} \mathcal{H}$.

When $\mathcal{H} = \operatorname{mod} A$ for some algebra A, we have

gldim $\mathcal{P}_0 = \operatorname{gldim} A$.

gldim: Stab $\mathcal{D} o \mathbb{R}_{\geq 0}$ is continuous.

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

- Stability conditions X-stability conditions
- N-reduction

q-stability conditions

Surface case

Quadratic differentials Further studies • Given a heart \mathcal{H} in \mathcal{D} , let \mathcal{P}_0 be the associated slicing with $\mathcal{P}(\phi) = \mathcal{H}[\phi]$ for $\phi \in \mathbb{Z}$ and $\mathcal{P}(\phi) = \emptyset$ otherwise. Then we have

 $\mathsf{gldim}\,\mathcal{P}_0=\mathsf{gldim}\,\mathcal{H}.$

• When $\mathcal{H} = \mathsf{mod} A$ for some algebra A, we have

gldim $\mathcal{P}_0 = \operatorname{gldim} A$.

• gldim : Stab $\mathcal{D} o \mathbb{R}_{>0}$ is continuous.

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions

N-reduction

q-stability conditions

Surface case

Quadratic differentials Further studies • Given a heart \mathcal{H} in \mathcal{D} , let \mathcal{P}_0 be the associated slicing with $\mathcal{P}(\phi) = \mathcal{H}[\phi]$ for $\phi \in \mathbb{Z}$ and $\mathcal{P}(\phi) = \emptyset$ otherwise. Then we have

 $\mathsf{gldim}\,\mathcal{P}_0=\mathsf{gldim}\,\mathcal{H}.$

• When $\mathcal{H} = \operatorname{mod} A$ for some algebra A, we have

$$\operatorname{gldim} \mathcal{P}_0 = \operatorname{gldim} A.$$

• gldim: Stab $\mathcal{D} \to \mathbb{R}_{\geq 0}$ is continuous.

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

- Stability conditions X-stability conditions
- N-reduction

q-stability conditions

Surface case

Quadratic differentials Further studies • Given a heart \mathcal{H} in \mathcal{D} , let \mathcal{P}_0 be the associated slicing with $\mathcal{P}(\phi) = \mathcal{H}[\phi]$ for $\phi \in \mathbb{Z}$ and $\mathcal{P}(\phi) = \emptyset$ otherwise. Then we have

$$\mathsf{gldim}\,\mathcal{P}_0=\mathsf{gldim}\,\mathcal{H}.$$

• When $\mathcal{H} = \operatorname{mod} A$ for some algebra A, we have

$$\operatorname{gldim} \mathcal{P}_0 = \operatorname{gldim} A.$$

• gldim: Stab
$$\mathcal{D} \to \mathbb{R}_{\geq 0}$$
 is continuous.

The inducing theorem

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions

N-reduction

q-stability conditions

Surface case Quadratic differentials

Theorem

Let $\mathcal{D}_{\mathbb{X}}$ be a Calabi-Yau- \mathbb{X} category. Given a stability condition $\widehat{\sigma} = (\widehat{Z}, \widehat{\mathcal{P}})$ on an \mathbb{X} -heart \mathcal{D}_{∞} of $\mathcal{D}_{\mathbb{X}}$, then the induced extension pre-stability condition $\sigma_* = (Z, \mathcal{P}_*)$ is a stability condition on $\mathcal{D}_{\mathbb{X}}$ if and only if

$$\operatorname{\mathsf{gldim}} \widehat{\sigma} \leq \operatorname{\mathsf{Re}}(s) - 1. \tag{4}$$

The q-stability conditions

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions

q-stability

Surface case

Quadratic differentials Further studies

Definition

An (open) q-stability condition on $\mathcal{D}_{\mathbb{X}}$ is a pair (σ, s) consisting of a stability condition σ on $\mathcal{D}_{\mathbb{X}}$ and a complex parameter s, satisfying

• σ is induced from some triple $(\mathcal{D}_{\infty}, \widehat{\sigma}, s)$ as above with

gldim $\widehat{\sigma} + 1 < \operatorname{Re}(s)$.

Denote by $QStab_s \mathcal{D}_X$ the set of all q-stability conditions with the parameter $s \in \mathbb{C}$ and by $QStab \mathcal{D}_X$ the union of all $QStab_s \mathcal{D}_X$.

Theorem (Ikeda-Qiu)

QStab $\mathcal{D}_{\mathbb{X}}$ is a complex manifold with dimension n + 1.

On range of gldim

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions

N-reduction

q-stability conditions

Surface case

Quadratic differentials Further studies

Theorem (Qiu)

Let Q be an acyclic quiver.

If Q is of Dynkin type. Then the range of gldim on $\mathbb{C}\setminus \operatorname{Stab} \mathcal{D}_{\infty}(Q) / \operatorname{Aut}$ is $[1 - 2/h, +\infty)$, where the unique minimal value is given by Kajiura-Saito-Takahashi's solution of Toda's Gepner equation

 $\tau(\sigma) = (-2/h) \cdot \sigma.$

Here h is the Coexter number of Q. Otherwise, the range is $[1, +\infty)$.

On range of gldim

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions

N-reduction

q-stability conditions

Surface case

Quadratic differentials Further studies

Theorem (Qiu)

Let Q be an acyclic quiver.

 If Q is of Dynkin type. Then the range of gldim on ℂ\Stab D_∞(Q) / Aut is [1 - 2/h, +∞), where the unique minimal value is given by Kajiura-Saito-Takahashi's solution of Toda's Gepner equation

$$\tau(\sigma) = (-2/h) \cdot \sigma.$$

Here h is the Coexter number of Q.

> Otherwise, the range is $|1,+\infty)$

On range of gldim

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions

N-reduction

q-stability conditions

Surface case

Quadratic differentials Further studies

Theorem (Qiu)

Let Q be an acyclic quiver.

 If Q is of Dynkin type. Then the range of gldim on ℂ\Stab D_∞(Q) / Aut is [1 - 2/h, +∞), where the unique minimal value is given by Kajiura-Saito-Takahashi's solution of Toda's Gepner equation

$$\tau(\sigma) = (-2/h) \cdot \sigma.$$

Here h is the Coexter number of Q. • Otherwise, the range is $[1, +\infty)$.

Case study: The tornado illustration for A_2

Outline

Motivations

Mirror symme Saito-Frobeniu structure Cluster theory

X-stability conditions

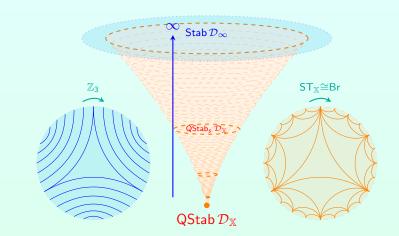
Stability conditions X-stability conditions

N-reduction

q-stability conditions

Surface case

Quadratic differentials Further studie



Outline

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials Further studie

Motivations

- Mirror symmetry
- Saito-Frobenius structure
- Cluster theory

X-stability conditions

- Stability conditions
- X-stability conditions
- N-reduction
- q-stability conditions

3 Surface case

- Quadratic differentials
- Further studies

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials Further studie

Let **X** be a compact Riemann surface and $\omega_{\mathbf{X}}$ be its holomorphic cotangent bundle.

A meromorphic quadratic differential ϕ on **X** is a meromorphic section of the line bundle $\omega_{\mathbf{X}}^2$. In terms of a local coordinate z on **X**, such a ϕ can be written

as $\phi(z) = g(z) dz^2$, where g(z) is a meromorphic function.

At a point of $\mathbf{X}^{\circ} = \mathbf{X} \setminus \operatorname{Crit}(\phi)$, there is a distinguished local coordinate ω , uniquely defined up to transformations of the form $\omega \mapsto \pm \omega + \operatorname{const}$, with respect to which $\phi(\omega) = d\omega \otimes d\omega$. In terms of a local coordinate z, we have $w = \int \sqrt{g(z)} dz$.

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials Further studie Let **X** be a compact Riemann surface and $\omega_{\mathbf{X}}$ be its holomorphic cotangent bundle.

A meromorphic quadratic differential ϕ on **X** is a meromorphic section of the line bundle $\omega_{\mathbf{x}}^2$.

In terms of a local coordinate z on X, such a ϕ can be written as $\phi(z) = g(z) dz^2$, where g(z) is a meromorphic function.

At a point of $\mathbf{X}^{\circ} = \mathbf{X} \setminus \operatorname{Crit}(\phi)$, there is a distinguished local coordinate ω , uniquely defined up to transformations of the form $\omega \mapsto \pm \omega + \operatorname{const}$, with respect to which $\phi(\omega) = d\omega \otimes d\omega$. In terms of a local coordinate z, we have $w = \int \sqrt{g(z)} dz$.

Yu Qiu

Outline

Motivations

Mirror symmetre Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studie Let **X** be a compact Riemann surface and $\omega_{\mathbf{X}}$ be its holomorphic cotangent bundle.

A meromorphic quadratic differential ϕ on **X** is a meromorphic section of the line bundle $\omega_{\mathbf{x}}^2$.

In terms of a local coordinate z on **X**, such a ϕ can be written as $\phi(z) = g(z) dz^2$, where g(z) is a meromorphic function.

At a point of $\mathbf{X}^{\circ} = \mathbf{X} \setminus \operatorname{Crit}(\phi)$, there is a distinguished local coordinate ω , uniquely defined up to transformations of the form $\omega \mapsto \pm \omega + \operatorname{const}$, with respect to which $\phi(\omega) = d\omega \otimes d\omega$. In terms of a local coordinate z, we have $w = \int \sqrt{g(z)} dz$.

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies Let **X** be a compact Riemann surface and $\omega_{\mathbf{X}}$ be its holomorphic cotangent bundle.

A meromorphic quadratic differential ϕ on **X** is a meromorphic section of the line bundle $\omega_{\mathbf{x}}^2$.

In terms of a local coordinate z on **X**, such a ϕ can be written as $\phi(z) = g(z) dz^2$, where g(z) is a meromorphic function.

At a point of $\mathbf{X}^{\circ} = \mathbf{X} \setminus \operatorname{Crit}(\phi)$, there is a distinguished local coordinate ω , uniquely defined up to transformations of the form $\omega \mapsto \pm \omega + \operatorname{const}$, with respect to which $\phi(\omega) = d\omega \otimes d\omega$. In terms of a local coordinate z, we have $w = \int \sqrt{g(z)} dz$.

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studie A (horizontal) *trajectory* of a quadratic differential ϕ on \mathbf{X}° is a maximal horizontal geodesic $\gamma \colon (0,1) \to \mathbf{X}^{\circ}$, with respect to the ϕ metric.

The trajectories of a meromeorphic quadratic differential ϕ provide the *horizontal foliation* on **X**.

The real (oriented) blow-up of (\mathbf{X}, ϕ) is a differentiable surface \mathbf{X}^{ϕ} , which is obtained from xx by replacing a pole $P \in \text{Pol}(\phi)$ by a boundary ∂_P , consisting of the real tangent directions at P.

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies A (horizontal) *trajectory* of a quadratic differential ϕ on \mathbf{X}° is a maximal horizontal geodesic $\gamma \colon (0,1) \to \mathbf{X}^{\circ}$, with respect to the ϕ metric.

The trajectories of a meromeorphic quadratic differential ϕ provide the *horizontal foliation* on **X**.

The real (oriented) blow-up of (\mathbf{X}, ϕ) is a differentiable surface \mathbf{X}^{ϕ} , which is obtained from xx by replacing a pole $P \in \text{Pol}(\phi)$ by a boundary ∂_P , consisting of the real tangent directions at P_{\cdot} .

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies A (horizontal) *trajectory* of a quadratic differential ϕ on \mathbf{X}° is a maximal horizontal geodesic $\gamma \colon (0,1) \to \mathbf{X}^{\circ}$, with respect to the ϕ metric.

The trajectories of a meromeorphic quadratic differential ϕ provide the *horizontal foliation* on **X**.

The real (oriented) blow-up of (\mathbf{X}, ϕ) is a differentiable surface \mathbf{X}^{ϕ} , which is obtained from xx by replacing a pole $P \in \text{Pol}(\phi)$ by a boundary ∂_P , consisting of the real tangent directions at P.

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies A (horizontal) *trajectory* of a quadratic differential ϕ on \mathbf{X}° is a maximal horizontal geodesic $\gamma \colon (0,1) \to \mathbf{X}^{\circ}$, with respect to the ϕ metric.

The trajectories of a meromeorphic quadratic differential ϕ provide the *horizontal foliation* on **X**.

The real (oriented) blow-up of (\mathbf{X}, ϕ) is a differentiable surface \mathbf{X}^{ϕ} , which is obtained from xx by replacing a pole $P \in \text{Pol}(\phi)$ by a boundary ∂_P , consisting of the real tangent directions at P.

Framed quadratic differentials (Calabi-Yau-3 case)

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials Further studie An **S**-framed quadratic differential (\mathbf{X}, ϕ, ψ) is a Riemann surface **X** with GMN differential ϕ , equipped with a diffeomorphism $\psi: \mathbf{S} \to \mathbf{X}^{\phi}$, preserving the marked points. Two **S**-framed quadratic differentials $(\mathbf{X}_i, \phi_i, \psi_i)$ are equivalent, if there exists a biholomorphism $f: \mathbf{X}_1 \to \mathbf{X}_2$ s.t.

•
$$f^*(\phi_2) = \phi_1;$$

Definition

ψ₂⁻¹ ∘ f_{*} ∘ ψ₁ ∈ Diff₀(S), where f_{*}: X₁^{φ₁} → X₂^{φ₂} is the induced diffeomorphism;

GMN differential: all zeroes of ϕ are simple. (For simplicity, suppose that every pole of ϕ has order at least 3.)

Framed quadratic differentials (Calabi-Yau-3 case)

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials Further studie

Definition

An **S**-framed quadratic differential (\mathbf{X}, ϕ, ψ) is a Riemann surface **X** with GMN differential ϕ , equipped with a diffeomorphism $\psi: \mathbf{S} \to \mathbf{X}^{\phi}$, preserving the marked points. Two **S**-framed quadratic differentials $(\mathbf{X}_i, \phi_i, \psi_i)$ are equivalent, if there exists a biholomorphism $f: \mathbf{X}_1 \to \mathbf{X}_2$ s.t.

•
$$f^*(\phi_2) = \phi_1;$$

ψ₂⁻¹ ∘ f_{*} ∘ ψ₁ ∈ Diff₀(S), where f_{*}: X₁^{φ₁} → X₂^{φ₂} is the induced diffeomorphism;

GMN differential: all zeroes of ϕ are simple. (For simplicity, suppose that every pole of ϕ has order at least 3.)

Decorated version

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studies

Definition (Qiu)

The decorated marked surface S_{\triangle} is a marked surface S together with a fixed set \triangle of \aleph 'decorating' points in the interior of S, where \aleph is the number of triangles in any triangulation of S.

Similarly, we have the S_{\triangle} -framed version, where we require the decoration \triangle maps to the set $Zero(\phi)$ of the quadratic differential ϕ on **X**.

WKB triangulation $\mathbf{T} = \mathbf{T}(\phi)$

Yu Qiu

Outline

Motivations

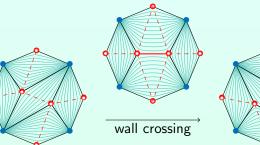
Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reduction q-stability conditions

Surface case

Quadratic differentials Further studi Edges of ${\bf T}$ are open arcs/generic trajectories connecting marked points/poles.



Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions N-reduction q-stability

Surface case

Quadratic differentials Further studie Given a quadratic differential ϕ on \mathbf{S}_{\triangle} (i.e. in FQuad₃(\mathbf{S}_{\triangle}), we construct a stability condition σ in Stab[°] $\mathcal{D}_3(\mathbf{S})$ as follows:

- The WKB-triangulation determines a heart via cluster theory (FST + Keller-Nicolás).
- The closed arcs/saddle trajectories connecting decorating points/zeroes, correspond to the simples {*S_i*} of hearts (cf. my previous series Decorated Marked Surfaces).

The central charge is given by

$$Z(S_i) = \int_{\widetilde{\eta}_i} \sqrt{\phi},$$

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case

Quadratic differentials Further studie Given a quadratic differential ϕ on \mathbf{S}_{\triangle} (i.e. in FQuad₃(\mathbf{S}_{\triangle}), we construct a stability condition σ in Stab[°] $\mathcal{D}_3(\mathbf{S})$ as follows:

- The WKB-triangulation determines a heart via cluster theory (FST + Keller-Nicolás).
- The closed arcs/saddle trajectories connecting decorating points/zeroes, correspond to the simples {*S_i*} of hearts (cf. my previous series Decorated Marked Surfaces).

The central charge is given by

$$Z(S_i) = \int_{\widetilde{\eta}_i} \sqrt{\phi},$$

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials Further studie Given a quadratic differential ϕ on \mathbf{S}_{\triangle} (i.e. in FQuad₃(\mathbf{S}_{\triangle}), we construct a stability condition σ in Stab[°] $\mathcal{D}_3(\mathbf{S})$ as follows:

- The WKB-triangulation determines a heart via cluster theory (FST + Keller-Nicolás).
- The closed arcs/saddle trajectories connecting decorating points/zeroes, correspond to the simples {*S_i*} of hearts (cf. my previous series Decorated Marked Surfaces).

• The central charge is given by

$$Z(S_i) = \int_{\widetilde{\eta}_i} \sqrt{\phi},$$

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials Further studie Given a quadratic differential ϕ on \mathbf{S}_{\triangle} (i.e. in FQuad₃(\mathbf{S}_{\triangle}), we construct a stability condition σ in Stab[°] $\mathcal{D}_3(\mathbf{S})$ as follows:

- The WKB-triangulation determines a heart via cluster theory (FST + Keller-Nicolás).
- The closed arcs/saddle trajectories connecting decorating points/zeroes, correspond to the simples {*S_i*} of hearts (cf. my previous series Decorated Marked Surfaces).

• The central charge is given by

$$Z(S_i) = \int_{\widetilde{\eta}_i} \sqrt{\phi},$$

Outline

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials

Further studies

Motivations

- Mirror symmetry
- Saito-Frobenius structure
- Cluster theory

X-stability conditions

- Stability conditions
- X-stability conditions
- N-reduction
- q-stability conditions

3 Surface case

- Quadratic differentials
- Further studies

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case Quadratic differentials Akishi lkeda and I will construct quivers with superpotential from flat surfaces and q-quadratic differential and prove the following:

$\mathsf{QQuad}^*_s(\mathsf{log}\, \mathbf{S}_{\bigtriangleup}) = \mathsf{QStab}^\circ_s\,\mathcal{D}_{\mathbb{X}}(\mathbf{S}_{\bigtriangleup}).$

Together with Yu Zhou, we will generalize some of results of previous series of works on decorated marked surfaces to Calabi-Yau-X case. See more in their talks.

Yu Qiu

Outline

Motivations

Mirror symmetry Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case Quadratic differentials Further studies Akishi lkeda and I will construct quivers with superpotential from flat surfaces and q-quadratic differential and prove the following:

$$\operatorname{\mathsf{QQuad}}^*_s(\operatorname{\mathsf{log}} \operatorname{\mathbf{S}}_{ riangle}) = \operatorname{\mathsf{QStab}}^\circ_s \mathcal{D}_{\mathbb{X}}(\operatorname{\mathbf{S}}_{ riangle}).$$

Together with Yu Zhou, we will generalize some of results of previous series of works on decorated marked surfaces to Calabi-Yau-X case. See more in their talks.

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case Quadratic differentials Further studies Akishi lkeda and l will construct quivers with superpotential from flat surfaces and q-quadratic differential and prove the following:

$$\operatorname{\mathsf{QQuad}}^*_s(\operatorname{\mathsf{log}} \mathbf{S}_{\bigtriangleup}) = \operatorname{\mathsf{QStab}}^\circ_s \mathcal{D}_{\mathbb{X}}(\mathbf{S}_{\bigtriangleup}).$$

Together with Yu Zhou, we will generalize some of results of previous series of works on decorated marked surfaces to Calabi-Yau- \mathbb{X} case.

See more in their talks.

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability conditions

Surface case Quadratic differentials Further studies Akishi lkeda and l will construct quivers with superpotential from flat surfaces and q-quadratic differential and prove the following:

$$\operatorname{\mathsf{QQuad}}^*_s(\operatorname{\mathsf{log}} \mathbf{S}_{\bigtriangleup}) = \operatorname{\mathsf{QStab}}^\circ_s \mathcal{D}_{\mathbb{X}}(\mathbf{S}_{\bigtriangleup}).$$

Together with Yu Zhou, we will generalize some of results of previous series of works on decorated marked surfaces to Calabi-Yau- \mathbb{X} case. See more in their talks.

References

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials

Further studies

Slide is available on my home page. Some of my new preprints on arxiv:

- 1807.00469
- 1807.00010
- 1806.00010
- 1805.00030

Welcome to discuss questions with me via email (yu.qiu@bath.edu) or Facebook or Wechat (id: Q-dexter).

References

Yu Qiu

Outline

Motivations

Mirror symmetr Saito-Frobenius structure Cluster theory

X-stability conditions

Stability conditions X-stability conditions *N*-reduction *q*-stability

Surface case

Quadratic differentials

Further studies

Slide is available on my home page. Some of my new preprints on arxiv:

- 1807.00469
- 1807.00010
- 1806.00010
- 1805.00030

Welcome to discuss questions with me via email (yu.qiu@bath.edu) or Facebook or Wechat (id: Q-dexter).

Ending

Yu Qiu

Outline

Motivations

Mirror symmet Saito-Frobeniu structure Cluster theory

X-stability conditions

- Stability conditions X-stability conditions *N*-reductio *q*-stability
- Surface case
- Quadratic differentials
- Further studies

Thank you!