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Mirror symmetry

Kontsevich's homological MS:

Mirror symmetry Db Fuk(X) o~ ’Db(Coh X\/),
Geometric expectation:

Stab® D ~ M px(X)

zww:LQ
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Stability condition via quadratic differentials

e Let S be a Fomin-Shapiro-Thurston marked surface.

Theorem (Bridgeland-Smith)

Mirror symmetry

Stab® D3(S)/ Aut = Quads(S).

By understanding Aut, there is a upgraded version:

Theorem (King-Qiu)
Suppose S is unpunctured and S be its decorated
version. Then

Stab® D3(S) 2 FQuads(Sa)

is simply connected.

Yu Qiu (CUHK/YMSC, Tsinghua)
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Let & be a flat surface and Do (S): = TFuk(&) its the
topological Fuakaya category.

Mirror symmetry

Theorem (Haiden-Katzarkov-Kontsevich)

Stab® Do (6) = FQuad(6).

o D3(S) is Calabi-Yau-3, which can be embeded into a
derived Fukaya category (Smith).

0 Do(6) is not Calabi-Yau.

Aim: Relating BS and HKK via g-deformation.

Yu Qiu (CUHK/YMSC, Tsinghua)
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Almost Frobenius structure

On the other hand, consider the Calabi-Yau-N category
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Sato-Fabenus Dn(Q): =Dwu(Tn Q).

We expect

StabDpn(Q)/STN(Q) =2 breg/ W, (2)

where ST y(Q) is the spherical twist group, that can be
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Twisted periods

Upgraded version:

s ¢s

Saito-Frobenius hreg/ w Stab® DN( Q)

structure
x Zn

Hom(I", C)

where the period map P, corresponds to the central charge Zy

for
N -2
V= ——

2

Aim: generalize to s = N in C.

Yu Qiu (CUHK/YMSC, Tsinghua)
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Yu Qiu N > 2, 7 be the Auslander-Reiten functor.
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Cluster categories

N > 2, 7 be the Auslander-Reiten functor.

Definition (Buan-Marsh-Reineke-Reiten-Todorov, Keller)

For any integer m > 2, the m-cluster shift is
Ym=7"to[m—1]. The m-cluster category Cmm(Q) is the
orbit category

Cm(Q): =Doo(Q)/ Em.

Theorem (Amoit-Guo-Keller)

Let Ty Q be the Ginzburg dga of degree N and
C(Ty Q) =perly @/ Dn(Q). Then

Cn-1(Q) = perly Q/ Dn(Q).

Yu Qiu (CUHK/YMSC, Tsinghua)
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Cluster-oo categories

Yu Qiu

Naively:
Deo(Q) = lim Cm(Q).

Qs ey The corresponding statement for the spaces of stability
conditions is (cf. Qiu)

StabDo(Q) = Nlim StabDy(Q)/ Brg .

Application: D (Q) is a cluster-X category (and hence sliting
is cluster-X tilting).

Yu Qiu (CUHK/YMSC, Tsinghua)
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Z~ and R-structures on triangulated categories

There are the following structures on a triangulated category D.
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Z~ and R-structures on triangulated categories
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There are the following structures on a triangulated category D.

o A (bounded) t-structure 7 (torsion part of some torsion
pair on D satisfying certain condition) or a heart H, which
provides a homology of D.

D = (H[K] | k € Z).

o A refinement of t-structure is a slicing
P ={P(¢) | » € R}. Note that for any ¢, P(¢,+) is a
t-structure with heart H = P(¢, ¢ + 1].

Yu Qiu (CUHK/YMSC, Tsinghua)



C-structure on triangulated categories

Yu Qiu

Definition (Bridgeland)

Let D be a triangulated category. A stability condition
o = (Z,P) on D consists of a central charge Z: K(D) — C
and a slicing P(¢) s.t.:

ity (a) if0# E € P(¢), then Z(E) = mee™, mg € Ry,

conditions

(b) P(o+1) =P(o)1],

(c) if g1 > ¢, then Homp(P(¢1), P(¢2)) = 0,

(d) Any E admits a HN-filtration with factors

{Ai € P(¢i) | 1 < i < I} for real numbers g1 > --- > ¢y.

Yu Qiu (CUHK/YMSC, Tsinghua)



Spaces of stability conditions

Yo Usually, we assume that the Grothendieck group K (D) is free
of finite rank, i.e. K(D) = Z®" for some n.
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Actions on Stab D

Yu Qiu

On Stab D, there are two group actions commuting each other.

o The first one is the natural C action
s (Za P) = (Z : e_iﬂs7,PRe(s))>

where Py (¢) = P(¢ + x).

o There is also a natural action on Stab®D induced by
Aut D, namely:

Stability
conditions

O(Z,P)= (Zod L, &(P)).

Yu Qiu (CUHK/YMSC, Tsinghua)
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X-categories Dx

Let Dx be a triangulated category with a distinguish
auto-equivalence X: Dx — Dx. Let E[IX]: = X/(E).
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X-categories Dx
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Let Dx be a triangulated category with a distinguish
auto-equivalence X: Dx — Dx. Let E[IX]: = X/(E). Set

R=Z[q"]
and define the R-action on K(Dx) by

conditions q" . [E] = [E[HX]]

Then K(Dx) has an R-module structure and assume:
(] K(Dx) = R®n.

Yu Qiu (CUHK/YMSC, Tsinghua)



X-stability conditions

Yu Qiu

Definition (lkeda-Qiu)

An X-stability condition (o, s) consists of a stability condition
o = (Z,P) on Dx and a complex number s € C satisfying

X(o)=s"0.

X-stability
conditions
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Definition (lkeda-Qiu)

An X-stability condition (o, s) consists of a stability condition
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conditions
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X-stability conditions

Yu Qiu

Definition (lkeda-Qiu)

An X-stability condition (o, s) consists of a stability condition
o = (Z,P) on Dx and a complex number s € C satisfying

X(o)=s"0.

stability For a fixed complex number s € C, consider the specialization

conditions

gs: Clg, g7 = C, g €.

Denote by Cs the complex numbers with the R-module
structure through gs.

Yu Qiu (CUHK/YMSC, Tsinghua)



X-stability conditions, alternative

Yu Qiu

Definition (lkeda-Qiu)
An X-stability condition (o, s) consists of a stability condition
o = (Z,P) on Dx and a complex number s € C satisfying the

following two more conditions:

X-stability
conditions
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X-stability
conditions

X-stability conditions, alternative

Definition (lkeda-Qiu)

An X-stability condition (o, s) consists of a stability condition
o = (Z,P) on Dx and a complex number s € C satisfying the
following two more conditions:

(e) the slicing satisfies P(¢ + Re(s)) = P(¢)[X] for all ¢ € R,
(f) the central charge Z: K(Dx) — Cs is R-linear;

Z € Homg(K(Dx), Cs).

Yu Qiu (CUHK/YMSC, Tsinghua)
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With a updated technical condition: X-support property.
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With a updated technical condition: X-support property.

Theorem (lkeda-Qiu)

The projection map of taking central charges
Zs: XStabs Dx — Homg(K(Dx),Cs), (Z,P)— Z

tabilty is a local homeomorphism of topological spaces. In particular,
Zs induces a complex structure on XStabs Dx.
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The X-spaces.
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With a updated technical condition: X-support property.

Theorem (lkeda-Qiu)

The projection map of taking central charges
Zs: XStabs Dx — Homg(K(Dx),Cs), (Z,P)— Z

tabilty is a local homeomorphism of topological spaces. In particular,
Zs induces a complex structure on XStabs Dx.

dim¢ XStabs Dx = n.

Yu Qiu (CUHK/YMSC, Tsinghua)



Yu Qiu

X-stability
conditions

Example:Calabi-Yau-X dga MxQ := (kQ, d)

Definition (Ginzburg and Keller)

Let @ = (Qo, Q1) be a finite acyclic quiver. Define a
7 & Z.X-graded quiver @ with same vertices and arrows

o an original arrow a: | — j € Q1 (degree 0);

o an opposite arrow a*: j — i for the original arrow
a:i—je @ (degree2 —X);

o a loop t; for each vertex i € Qy (degree 1 — X).

Let kQ be a Z & 7ZX-graded path algebra of Q, and define a
differential d: kQ — k@ of degree 1 by

oda=da*=0 foraec Q;

odt;=¢e (Zate(aa* - a*a)) €i;
where e; is the idempotent at i € Qg

Yu Qiu (CUHK/YMSC, Tsinghua)



Calabi-Yau-X categories

Yu Qiu

Denote by D(Q): = D?(kQ) the bounded derived category
of k@ and

Dx(Q): =Dr(M'xQ)

the finite-dimensional derived category of 'x Q.

Theorem (Keller, Van den Bergh)

X-stability
conditions

The Calabi-Yau-X completion Mx(kQ) of the path algebra kQ
is isomorphic to the Ginzburg Calabi-Yau-X algebra 'xQ. In
particular, Dx(Q) is Calabi-Yau-X.

Yu Qiu (CUHK/YMSC, Tsinghua)
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N-reduction

Let N be an integer. The orbit category Dx /[X — N] is
N-reductive if it behaves well.
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N-reduction

Let N be an integer. The orbit category Dx /[X — N] is
N-reductive if it behaves well.

We will write Dy = Dx //[X — N] when the triangulated
category Dy is the canonical triangulated hull of Dx /[X — N].

Yu Qiu (CUHK/YMSC, Tsinghua)
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N-reduction

N-reduction on spaces

Theorem (lkeda-Qiu)

If Dx is an N-reductive, then there is a canonical injection of
complex manifolds

LN XStabN(Dx) — Stab Dy,

whose image of vy is open and closed.

Yu Qiu (CUHK/YMSC, Tsinghua)
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g-stability

Conditions o g-stability conditions
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The X-hearts

Yu Qiu

An X-heart Do, C Dx is a full triangulated subcategory of
Dx satisfying the following conditions:

(1) if ki > ko, then Home(Doo[k;lX],Doo[ng]) =0,

(2) Any E admits a HN-filtration with factors
{Ai € Doo[kiX] | 1 < k < I} with integers ky > --- > k;.

g-stability
conditions
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An X-heart Do, C Dx is a full triangulated subcategory of
Dx satisfying the following conditions:

(1) if ki > ko, then Home(Doo[k;lX],Doo[ng]) =0,

(2) Any E admits a HN-filtration with factors
{Ai € Doo[kiX] | 1 < k < I} with integers ky > --- > k;.

g-stability

conditions DX = <DOO [k] | k G Z>
K(Dw) ®z R = K(Dx).
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The X-hearts

Yu Qiu

An X-heart Do, C Dx is a full triangulated subcategory of
Dx satisfying the following conditions:

(1) if ki > ko, then Home(Doo[k;lX],Doo[ng]) =0,

(2) Any E admits a HN-filtration with factors
{Ai € Doo[kiX] | 1 < k < I} with integers ky > --- > k;.

g-stability

conditions DX _ <Doo [k] | k G Z>‘
K(Dso) ®z R = K(Dx).
Example: Doy = Doo(Q) and Dx = Dx(Q).

Yu Qiu (CUHK/YMSC, Tsinghua)



The construction

Consider a triple (Dwo, 7, s) consists of an X-heart Do, a
(Bridgeland) stability condition & = (Z,P) on Dy, and a
complex number s. We construct a pre-stability condition
ox = (Z,Px) as follows.

Yu Qiu

g-stability
conditions
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The construction

Consider a triple (Dwo, 7, s) consists of an X-heart Do, a
(Bridgeland) stability condition & = (Z,P) on Dy, and a
complex number s. We construct a pre-stability condition
o« = (Z,Ps) as follows. First extend Z to

Yu Qiu

Z,;: =Z®R: K(Dx) — Clg,q7]

and let
Z=gqgso0Zy: K(Dx) = C

g-stability

conditions that gives a central charge function on Dx.

Yu Qiu (CUHK/YMSC, Tsinghua)



The construction

Consider a triple (Dwo, 7, s) consists of an X-heart Do, a
(Bridgeland) stability condition & = (Z,P) on Dy, and a
complex number s. We construct a pre-stability condition
o« = (Z,Ps) as follows. First extend Z to

Yu Qiu

Z,;: =Z®R: K(Dx) — Clg,q7]

and let
Z=gqs0Z,: K(Dx) = C
Sonditons that gives a central charge function on Dx. The slicing P, is
defined as

Pu(®) = (PIZX])*: = (P(6 — kRe(s))[kX]).  (3)

Yu Qiu (CUHK/YMSC, Tsinghua)



Global dimension function

Yu Qiu

Generalizing the global dimension of an algebra (or an Abelian
category), we have the following.
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conditions
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Global dimension function

Yu Qiu

Generalizing the global dimension of an algebra (or an Abelian
category), we have the following.

Definition

Given a slicing P on a triangulated category D. Define the
global dimension of P by

gldim P = sup{¢2 — ¢1 | Hom(P(¢1), P(¢2)) # 0}.

g-stability
conditions

For a stability conditions o = (Z,P) on D, its global dimension
gldim o is defined to be gldim P.

Yu Qiu (CUHK/YMSC, Tsinghua)
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Some facts

o Given a heart H in D, let Py be the associated slicing with
P(¢) = H[¢] for ¢ € Z and P(¢) = D otherwise. Then we
have

gldim Py = gldim H.

g-stability
conditions
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o Given a heart H in D, let Py be the associated slicing with
P(¢) = H[¢] for ¢ € Z and P(¢) = D otherwise. Then we
have

gldim Py = gldim H.

o When ‘H = mod A for some algebra A, we have

g-stability gldlm Po = gldlm A

conditions
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Some facts

Yu Qiu

o Given a heart H in D, let Py be the associated slicing with
P(¢) = H[¢] for ¢ € Z and P(¢) = D otherwise. Then we
have

gldim Py = gldim H.

o When ‘H = mod A for some algebra A, we have

g-stability gldlm Po = gldlm A

conditions

o gldim: StabD — Rxq is continuous.
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The inducing theorem

Yu Qiu

Theorem

Let Dx be a Calabi-Yau-X category. Given a stability condition
o = (Z,P) on an X-heart Do, of Dx, then the induced
extension pre-stability condition o, = (Z,Px) is a stability
condition on Dx if and only if

b gldima < Re(s) — 1.

Yu Qiu (CUHK/YMSC, Tsinghua)



The g-stability conditions

Yu Qiu Definition
An (open) g-stability condition on Dx is a pair (o,s) consisting
of a stability condition o on Dx and a complex parameter s,
satisfying

o o is induced from some triple (D, 7, s) as above with

gldima + 1 < Re(s).

c Denote by QStabs Dx the set of all g-stability conditions with
Endtion the parameter s € C and by QStab Dx the union of all
QStab, Dx.

Theorem (lkeda-Qiu)
QStab Dx is a complex manifold with dimension n+ 1.

Yu Qiu (CUHK/YMSC, Tsinghua)



On range of gldim

Yu Qiu
Theorem (Qiu)

Let Q be an acyclic quiver.

g-stability
conditions
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On range of gldim

Yu Qiu

Let Q be an acyclic quiver.

o If Q is of Dynkin type. Then the range of gldim on
C\ StabDo(Q)/ Aut is [1 — 2/h,+00), where the unique
minimal value is given by Kajiura-Saito- Takahashi’s
solution of Toda's Gepner equation

g-stability ’T(O’) = (—2/h) + 0.

conditions

Here h is the Coexter number of Q.
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On range of gldim

Yu Qiu

Let Q be an acyclic quiver.

o If Q is of Dynkin type. Then the range of gldim on
C\ StabDo(Q)/ Aut is [1 — 2/h,+00), where the unique
minimal value is given by Kajiura-Saito- Takahashi’s
solution of Toda's Gepner equation

g-stability ’T(O’) = (—2/h) + 0.

conditions

Here h is the Coexter number of Q.

o Otherwise, the range is [1,+00).

Yu Qiu (CUHK/YMSC, Tsinghua)



Case study: The tornado illustration for A,

g-stability
conditions
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ierentists © Surface case
o Quadratic differentials
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- fj.' Quadratic differentials

Let X be a compact Riemann surface and wx be its
holomorphic cotangent bundle.

Quadratic
differentials
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. tj.' Quadratic differentials

S Let X be a compact Riemann surface and wx be its

holomorphic cotangent bundle.
A meromorphic quadratic differential ¢ on X is a meromorphic

section of the line bundle w)z(.

Quadratic
differentials
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. t'..' Quadratic differentials

Yu Qiu

Let X be a compact Riemann surface and wx be its
holomorphic cotangent bundle.

A meromorphic quadratic differential ¢ on X is a meromorphic
section of the line bundle w)z(.

In terms of a local coordinate z on X, such a ¢ can be written
as ¢(z) = g(z) dz?, where g(z) is a meromorphic function.

Quadratic
differentials
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tt; Quadratic differentials

Yu Qiu

Let X be a compact Riemann surface and wx be its
holomorphic cotangent bundle.

A meromorphic quadratic differential ¢ on X is a meromorphic
section of the line bundle w)z(.

In terms of a local coordinate z on X, such a ¢ can be written
as ¢(z) = g(z) dz?, where g(z) is a meromorphic function.

At a point of X° = X\ Crit(¢), there is a distinguished local

Quadratic coordinate w, uniquely defined up to transformations of the
form w — + w + const, with respect to which ¢(w) = dw ® dw.

In terms of a local coordinate z, we have w = [ \/g(z)dz.

Yu Qiu (CUHK/YMSC, Tsinghua)



Foliation and real blow-up

A (horizontal) trajectory of a quadratic differential ¢ on X° is a
maximal horizontal geodesic v: (0,1) — X°, with respect to
the ¢ metric.

Quadratic
differentials
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Foliation and real blow-up

Yu Qiu

A (horizontal) trajectory of a quadratic differential ¢ on X° is a
maximal horizontal geodesic v: (0,1) — X°, with respect to
the ¢ metric.

The trajectories of a meromeorphic quadratic differential ¢
provide the horizontal foliation on X.

Quadratic
differentials
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Foliation and real blow-up

Yu Qiu

A (horizontal) trajectory of a quadratic differential ¢ on X° is a
maximal horizontal geodesic v: (0,1) — X°, with respect to
the ¢ metric.

The trajectories of a meromeorphic quadratic differential ¢
provide the horizontal foliation on X.

The real (oriented) blow-up of (X, ¢) is a differentiable surface
X?, which is obtained from xx by replacing a pole P € Pol(¢)
by a boundary dp, consisting of the real tangent directions at
P.

Quadratic
differentials
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Foliation and real blow-up

Yu Qiu

A (horizontal) trajectory of a quadratic differential ¢ on X° is a

maximal horizontal geodesic v: (0,1) — X°, with respect to

the ¢ metric.

The trajectories of a meromeorphic quadratic differential ¢

provide the horizontal foliation on X.

The real (oriented) blow-up of (X, ¢) is a differentiable surface

X?, which is obtained from xx by replacing a pole P € Pol(¢)

by a boundary dp, consisting of the real tangent directions at

P.

Quadratic And we will mark the points on dp that correspond to the
distinguished tangent directions. Thus X? is marked surface.
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Framed quadratic differentials (Calabi-Yau-3 case)

Yu Qiu

Definition

An S-framed quadratic differential (X, ¢, ) is a Riemann
surface X with GMN differential ¢, equipped with a
diffeomorphism 1: S — X®, preserving the marked points.

Two S-framed quadratic differentials (X, ¢i, ;) are equivalent,
if there exists a biholomorphism f: X; — Xy s.t.

o f*(¢2) = ¢1;
o Pyt o f, oty € Diffg(S), where f,: X{* — X$2 is the
induced diffeomorphism;

Quadratic
differentials
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Framed quadratic differentials (Calabi-Yau-3 case)

Yu Qiu

Definition

An S-framed quadratic differential (X, ¢, ) is a Riemann
surface X with GMN differential ¢, equipped with a
diffeomorphism 1: S — X®, preserving the marked points.

Two S-framed quadratic differentials (X, ¢i, ;) are equivalent,
if there exists a biholomorphism f: X; — Xy s.t.

o f*(¢2) = ¢1;
o Pyt o f, oty € Diffg(S), where f,: X{* — X$2 is the
induced diffeomorphism;

Quadratic
differentials

GMN differential: all zeroes of ¢ are simple. (For simplicity,
suppose that every pole of ¢ has order at least 3.)

Yu Qiu (CUHK/YMSC, Tsinghua)



Decorated version

Yu Qiu

Definition (Qiu)

The decorated marked surface S is a marked surface S
together with a fixed set /A of X ‘decorating’ points in the
interior of S, where N is the number of triangles in any
triangulation of S.

Similarly, we have the Sa-framed version, where we require the
decoration A maps to the set Zero(¢) of the quadratic
Quadratic differential ¢ on X.

differentials
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WKB triangulation T = T(¢)

Edges of T are open arcs/generic trajectories connecting
marked points/poles.
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Sketch of Bridgeland-Smith (similarly for HKK)

Given a quadratic differential ¢ on S (i.e. in FQuads(Sa), we
construct a stability condition o in Stab® D3(S) as follows:

Quadratic
differentials
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Sketch of Bridgeland-Smith (similarly for HKK)

Yu Qiu

Given a quadratic differential ¢ on S (i.e. in FQuads(Sa), we
construct a stability condition o in Stab® D3(S) as follows:

o The WKB-triangulation determines a heart via cluster
theory (FST + Keller-Nicolds).

Quadratic
differentials
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Sketch of Bridgeland-Smith (similarly for HKK)

Yu Qiu

Given a quadratic differential ¢ on S (i.e. in FQuads(Sa), we
construct a stability condition o in Stab® D3(S) as follows:

o The WKB-triangulation determines a heart via cluster
theory (FST + Keller-Nicolds).

o The closed arcs/saddle trajectories connecting decorating
points/zeroes, correspond to the simples {S;} of hearts
(cf. my previous series Decorated Marked Surfaces).

Quadratic
differentials
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Sketch of Bridgeland-Smith (similarly for HKK)

Yu Qiu

Given a quadratic differential ¢ on S (i.e. in FQuads(Sa), we
construct a stability condition o in Stab® D3(S) as follows:

o The WKB-triangulation determines a heart via cluster
theory (FST + Keller-Nicolds).

o The closed arcs/saddle trajectories connecting decorating
points/zeroes, correspond to the simples {S;} of hearts
(cf. my previous series Decorated Marked Surfaces).

o The central charge is given by

Quadratic Z(S;) = / Vo,

Ni
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© Surface case

Further studies

o Further studies
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Upcoming preprints

Akishi Ikeda and | will construct quivers with superpotential
from flat surfaces and g—quadratic differential and prove the
following:

Further studies
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Upcoming preprints

Akishi Ikeda and | will construct quivers with superpotential
from flat surfaces and g—quadratic differential and prove the
following:

QQuad;(logSa) = QStabg Dx(SA).

Further studies

Yu Qiu (CUHK/YMSC, Tsinghua)



Upcoming preprints

Yu Qiu

Akishi Ikeda and | will construct quivers with superpotential
from flat surfaces and g—quadratic differential and prove the
following:

QQuad;(logSa) = QStabg Dx(SA).

Together with Yu Zhou, we will generalize some of results of
previous series of works on decorated marked surfaces to
Calabi-Yau-X case.

Further studies
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Upcoming preprints

Yu Qiu

Akishi Ikeda and | will construct quivers with superpotential
from flat surfaces and g—quadratic differential and prove the
following:

QQuad;(logSa) = QStabg Dx(SA).

Together with Yu Zhou, we will generalize some of results of
previous series of works on decorated marked surfaces to
Calabi-Yau-X case.

See more in their talks.

Further studies
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Slide is available on my home page.
Some of my new preprints on arxiv:

1807.00469
o 1807.00010
o 1806.00010
o 1805.00030
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Slide is available on my home page.
Some of my new preprints on arxiv:

o 1807.00469
o 1807.00010
o 1806.00010
o 1805.00030

Welcome to discuss questions with me via email
(yu.qiu@bath.edu) or Facebook or Wechat (id: Q-dexter).
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Thank you!

Further studies
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